This full version, available on TeesRep, is the authors’ post-print version.
For full details see: http://tees.openrepository.com/tees/handle/10149/594423
Termination and Non-Termination Specification Inference

Ton Chanh Le\(^1\) Shengchao Qin\(^2,3\) Wei-Ngan Chin\(^1\)

\(^1\)Department of Computer Science, National University of Singapore
\(^2\)School of Computing, Teesside University
\(^3\)Shenzhen University
(Chanle,chinwn)@comp.nus.edu.sg, s.qin@tees.ac.uk

Abstract

Techniques for proving termination and non-termination of imperative programs are usually considered as orthogonal mechanisms. In this paper, we propose a novel mechanism that analyzes and proves both program termination and non-termination at the same time. We first introduce the concept of second-order termination constraints and accumulate a set of relational assumptions on them via a Hoare-style verification. We then solve these assumptions with case analysis to determine the (conditional) termination and non-termination scenarios expressed in some specification logic form. In contrast to current approaches, our technique can construct a summary of terminating and non-terminating behaviors for each method. This enables modularity and reuse for our termination and non-termination proving processes. We have tested our tool on sample programs from a recent termination competition, and compared favorably against state-of-the-art termination analyzers.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; F.3.1 [Logics and Meanings of Programs]: Specifying, Verifying and Reasoning about Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Program Analysis

General Terms
Languages, Theory, Verification

Keywords
Program termination and non-termination analysis; Bi-Abductive inference; Hoare logic.

1. Introduction

For the last ten years, we have seen a fruitful line of research on proving termination \([2,3,4,6,7,11,12,25,28,29,33,36,38]\) and non-termination \([1,3,5,6,8,23,40,44,45]\) of imperative programs. Although these techniques for proving program termination and non-termination are often considered separately, a termination prover might deploy its own non-termination analysis mechanism to search for a feasible counterexample when a termination proof fails. \(\text{TREX} [24]\) is one of the first works to combine two different termination and non-termination proving techniques to alternatively assist each other in a whole program analysis for non-recursive programs. Nevertheless, current techniques for proving non-termination are mostly standalone techniques to existing termination proving mechanisms.

To capture the termination and non-termination behaviors of each program, \(\text{Le et al.} [32]\) has recently proposed an integrated specification logic with three temporal predicates \(\text{Term M Loop and MayLoop}\), which denote, respectively, the scenarios for definite program termination (with a lexicographic ranking measure \(M\) made of a list of positive integers), definite non-termination (with an unreachable post-condition) and possible (unknown) non-termination. However, this framework currently requires temporal specifications to be given by programmers.

We propose in this paper a modular inference framework that can analyze both the termination and non-termination of each method in a program. This approach is novel in that it guides us to perform suitable case-splits on pre-conditions that lead to definite non-termination or definite termination, where possible. If a definite termination (or non-termination) case is not yet attained, we may perform a further case-split via an abductive inference \([43]\) or decide to finish with a \(\text{MayLoop}\) classification to signify an unknown outcome. For each method, our inference mechanism incrementally constructs a summary of its termination, non-termination or unknown behaviors, so that it can be reused in the inference of the remaining methods higher-up in the calling hierarchy.

To support termination and non-termination inference, we introduce unknown temporal pre- and post-predicates in our specification logic to capture termination or non-termination behaviors (that are to be resolved by our inference). For example, in Figure 1, the pair of unknown pre-predicate \(U_{\text{pre}}(x,y)\) and post-predicate \(U_{\text{po}}(x,y)\) in the specification of method \(\text{foo}\) denotes that the termination or non-termination status of \(\text{foo}\) is currently unknown. While the pre-predicate \(U_{\text{pre}}(x,y)\) in the method’s precondition guides the overall inference process with suitable case-splits, the post-predicate \(U_{\text{po}}(x,y)\) in its postcondition is meant to capture the reachability or unreachability of the method’s exits. This post-predicate will be strengthened to \(\text{false}\) in scenarios where \(\text{foo}\) is definitely non-terminating. Moreover, it can also be used to trivially determine base-case scenarios with immediate termination property. This combined use of unknown pre- and post-predicates is novel, since it allows us to modularly analyze each method (with the help of case-splits where needed) to obtain a comprehensive summary of the method’s termination and non-termination characteristics.

Our main contribution lies in a single modular bi-abductive analysis that automatically infers sufficient preconditions respectively for termination and non-termination of each method in a program. The rest of this paper is organized as follows. Section 2 introduces the novel unknown pre/post predicates and illustrates their use for inferring termination and non-termination properties of the \(\text{foo}\) example. Section 3 summarizes the background on the termination

```c
void foo(int x, int y) 
requires U_{\text{pre}}(x,y)
ensures U_{\text{po}}(x,y):
{ 
  if (x < 0) return;
  else foo(x+y,y);
}
```

Figure 1. The foo example
we have designed the termination measure to allow the use of an unknown temporal pre-predicate. Enhancements of separation logic (MayLoop) and non-termination reasoning, these unknown predicates are part of the specification logic's formulas and can therefore be reasoned as its head and tail, respectively.

Amongst them, the loop and term predicates are incomparable since they denote disjoint classes of programs (i.e., definitely non-terminating vs. definitely terminating programs, respectively). Our inference thus attempts to discover the weaker loop and term predicates for its unknown pre-predicate, where possible.

We derive inductive definitions for these unknown predicates, in order to give the best possible interpretations to their temporal predicates. In the case of post-predicate, we attempt to determine its reachability or unreachability, so that we can immediately decide on either (base-case scenario for) termination or (inductive-case scenario for) definite non-termination. From the relational assumption (a1), we can immediately infer a base-case scenario x<0 where the foo method would terminate. The other two relational assumptions occur under a different scenario x≥0 which neither indicates definite termination nor definite non-termination. From these partial instantiations on the two unknown temporal predicates, we refine them to the following definitions:

\[\text{loop}(x, y) \equiv x<0 \lor \text{term} \lor x\geq 0 \land \text{loop}(x, y) \]

\[\text{loop}(x, y) \equiv (x<0 \Rightarrow \text{true}) \land (x\geq 0 \Rightarrow \text{loop}(x, y)) \]

where two auxiliary unknown predicates are introduced for the input scenario x≥0. Note that the term, short for term, is used to denote base-case termination scenario where its lexicographic ranking of each method call is always satisfied and the postcondition always holds at the end of the method body.

For example, the verification conditions (VCs) encountered by Hoare-style forward verification of method foo are:

- \((c_1) \ x<0 \lor \text{loop}(x, y) \Rightarrow \text{loop}(x, y) \)
- \((c_2) \ x\geq 0 \land x'=x+y \land y'=y \land \text{loop}(x, y) \Rightarrow \text{loop}(x', y') \)
- \((c_3) \ x\geq 0 \land x'=x+y \land y'=y \land \text{loop}(x, y) \land \text{loop}(x', y') \Rightarrow \text{loop}(x, y) \)

The first VC \((c_1) \) is obtained from the base-case form when the post-condition of the foo method is being proven. The second VC \((c_2) \) captures the proving of precondition for the recursive call, while the last VC \((c_3) \) captures the entailment proving of the postcondition of method foo in the recursive branch. These VCs capture the unknown termination behaviors of both the caller (i.e. denoted by the pair of predicates \(\text{loop}(x, y) \) and \(\text{loop}(x, y) \)) and the callee (i.e. denoted by \(\text{loop}(x', y') \) and \(\text{loop}(x', y') \)).

For these unknown predicates, we attempt to derive the strongest possible post-predicate, where possible. As we intend to capture the unreachable of each post-predicate, the strongest post-predicate in our analysis is actually false. If our inference for falsity of post-predicates fails, we denote its possible reachability by true and then attempt to infer the weakest pre-predicate, where possible. The temporal pre-predicates are ordered by the following implication hierarchy MayLoop \(\Rightarrow \) Loop and MayLoop \(\Rightarrow \) Term. Amongst them, MayLoop is considered as the strongest one, which is analogous to false in the domain of logical specification. The intuition is that MayLoop can be used to denote the termination property of any program though such a use would form a rather poor specification, which is similar to how false could be naively (and redundantly) used as the precondition for any program.

From the earlier VCs, we infer three relational assumptions where unknown pre-predicate \(\text{loop}(x', y') \) is related inductively to an earlier pre-predicate \(\text{loop}(x, y) \) (see \(a_1 \)), while unknown post-predicate \(\text{loop}(x, y) \) is either expressed in base-case form (see \(a_2 \)) or related inductively to an earlier occurrence of the post-predicate \(\text{loop}(x', y') \) (see \(a_3 \)).

We derive inductive definitions for these unknown predicates, in order to give the best possible interpretations to their temporal predicates. In the case of post-predicate, we attempt to determine its reachability or unreachability, so that we can immediately decide on either (base-case scenario for) termination or (inductive-case scenario for) definite non-termination. From the relational assumption (a1), we can immediately infer a base-case scenario x<0 where the foo method would terminate. The other two relational assumptions occur under a different scenario x≥0 which neither indicates definite termination nor definite non-termination. From these partial instantiations on the two unknown temporal predicates, we refine them to the following definitions:

\[\text{loop}(x, y) \equiv x<0 \lor \text{term} \lor x\geq 0 \land \text{loop}(x, y) \]

\[\text{loop}(x, y) \equiv (x<0 \Rightarrow \text{true}) \land (x\geq 0 \Rightarrow \text{loop}(x, y)) \]

where two auxiliary unknown predicates are introduced for the input scenario x≥0. Note that the term, short for term, is used to denote base-case termination scenario where its lexicographic ranking
measure is trivially empty. Our unknown pre-predicate is being expressed as a disjunction on either known or unknown temporal resource constraints, while the post-predicate is being expressed as a guarded conjunction of either reachability (true), unreachability if false or unknown. That is the two predicates are currently known for the input scenario $x < 0$ but unknown for the scenario $x \geq 0$.

As the precondition is now partially known, we could refine each (a_i^0) through a substitution with the partial definition of $U_{pr}(x, y)$ and $U_{po}(x, y)$ to get the new relational assumptions over the unknowns:

$$(a_i^0) \quad x \geq 0 \land x' = x+y \lor y' = y \land x' < 0 \land U_{po}(x, y) \Rightarrow \text{Term}$$

$$(a_i^1) \quad x \geq 0 \land x' = x+y \land y' = y \land x' > 0 \lor U_{pr}(x, y) \Rightarrow U_{pr}(x', y')$$

$$(a_i^2) \quad x \geq 0 \land x' = x+y \land y' = y \land (x' \geq 0 \Rightarrow U_{po}(x', y'))$$

$$\Rightarrow (x \geq 0 \Rightarrow U_{po}(x, y))$$

The relational assumption (a_i^0) describes the reachability of the base-case condition (i.e. $x < 0$), denoted by Term, under the input scenario $x \geq 0$. We can thus attempt a termination proof by synthesizing a ranking function for $x \geq 0$ but this proof fails. We then try a non-termination proof by examining (a_i^0) on unknown post-predicate to determine a condition for unreachability. Such condition must ensure that the base case is not reached in the next recursion, i.e. $x' \geq 0$, and we refer to this as potential non-termination pre-condition. Since $x' = x+y$, the condition $x+y \geq 0$ would be a trivial potential non-termination pre-condition. However, our inference engine would discover a better (or weaker) condition, namely $x \geq 0$, for definite non-termination with the help of abductive inference. With this, a case-split with the condition $y \geq 0$ and its negation $y < 0$ is used to refine the definitions for $U_{pr}(x, y)$ and $U_{po}(x, y)$ into:

$$(U_{pr}(x, y) \equiv y \geq 0 \land U_{po}(x, y) \lor y < 0 \land U_{po}(x, y))$$

Consequently, the following six specialized assumptions are derived from the earlier ones (a_0^0), (a_0^1) and (a_0^2):

$$(a_i^3) \quad x \geq 0 \land x' = x+y \land y' = y \land x' < 0 \lor U_{po}(x, y) \Rightarrow \text{Term}$$

$$(a_i^4) \quad x \geq 0 \land x' = x+y \land y' = y \land (x' > 0 \lor y' \geq 0) \Rightarrow U_{po}(x', y')$$

$$\Rightarrow (x \geq 0 \land x' \geq 0 \Rightarrow U_{po}(x', y'))$$

$$(a_i^5) \quad x \geq 0 \land x' = x+y \land y' = y \land (x' \geq 0 \lor y > 0) \Rightarrow U_{po}(x', y')$$

$$\Rightarrow (x \geq 0 \land x' \geq 0 \Rightarrow U_{po}(x', y'))$$

$$(a_i^6) \quad x \geq 0 \land x' = x+y \land y' = y \land (x' \geq 0 \land y' < 0) \Rightarrow U_{po}(x', y')$$

The first three relational assumptions, $(a_1^0) - (a_2^0)$, form a group which will be analyzed together for the given input scenario $x \geq 0 \land y \geq 0$. The next three relational assumptions, $(a_1^0) - (a_3^0)$, form another group for the input scenario $x \geq 0 \land y < 0$.

The first group of relational assumptions, $(a_1^0) - (a_2^0)$, allows us to confirm a definite non-termination scenario, since we can use (a_3^0) to determine the unreachable quotient of its post-predicate $U_{po}(x, y)$. Using the hypothesis $U_{po}(x, y) \equiv \text{false}$ for both occurrences of the post-predicate $U_{po}(x, y)$ in (a_3^0), we can inductively determine the falsity (or unreachable) of $U_{po}(x, y)$. Note our use of inductive reasoning here which assumes the hypothesis that $U_{po}(x, y)$ is unreachable under pre-condition $x \geq 0 \land y \geq 0$, in order to prove it.

The second group of relational assumptions, $(a_1^0) - (a_3^0)$, suggests us to prove the method’s termination under the pre-condition $x \geq 0 \land y < 0$ first, since its base case (captured by (a_1^0)) is provably reachable under this condition. This termination scenario is confirmed, once we have derived a lexicographic ranking measure x that is bounded and would moreover decrease with each recursive invocation for the post-predicate $U_{po}(x, y)$ using (a_1^1).

As a summary of our combined analyses, we have effectively derived the following definitions for the two unknown predicates:

$U_{pr}(x, y) \equiv x < 0 \land \text{Term} \lor x \geq 0 \land y \geq 0 \land \text{Term}[x]$}

$U_{po}(x, y) \equiv (x < 0 \land \text{true}) \land (x \geq 0 \land y < 0 \Rightarrow \text{true}) \land (x \geq 0 \land y \geq 0 \Rightarrow \text{false})$

Note how the unknown temporal predicates $U_{po}(x, y)$ and $U_{pr}(x, y)$ are being resolved to be Loop and an unreachable false for input scenario $y \geq 0$, respectively. In contrast, the unknown predicates $U_{pr}(x, y)$ and $U_{po}(x, y)$ are being resolved to be Term $[x]$ and a reachable true state for input scenario $y < 0$, respectively.

Using the inferred predicate definitions, we can finally construct the following case-based specification (13) which fully captures termination and non-termination behaviors for method foo.

$$\text{case } \{ x < 0 \rightarrow \text{Term ensures true; }$$

$y < 0 \rightarrow \text{Term ensures true; }$$

$y \geq 0 \rightarrow \text{Loop enters false; } \}$$

2.1 Other Examples

Our termination and non-termination inference is completely automated. By allowing unknown temporal predicates into functional correctness specifications, our inference mechanism can freely leverage on prior infrastructures to (i) handle a wider class of programs, and to (ii) improve the accuracy of the inference results. Note that prior safety specifications for the analyzed methods might be manually given or be automatically derived by other inference mechanisms, but they are orthogonal to our current proposal.

We list below some interesting examples to demonstrate how our inference mechanism works with programs that already have some safety specifications.

Nestled Recursion. For examples with nested recursion, such as the Ackermann function and the McCarthy 91 function in Figure 3 some knowledge on its output may be crucial for the inference of their termination and non-termination properties. Without any specification, our inference mechanism returns incomplete summaries on the terminating and non-terminating behaviors of these two functions. The result for the Ackermann function is:

$$\text{case } \{ m = 0 \rightarrow \text{Term ensures true; }$$

$m < 0 \lor n < 0 \rightarrow \text{Loop enters false; }$$

$m > 0 \land n \geq 0 \rightarrow \text{MayLoop ensures true; } \}$

While the inference shows that this function is terminating when $m = 0$ (base case) or non-terminating when $m < 0 \lor n < 0$, it cannot prove the termination of the function under the input scenario $n \geq 0 \land n > 0$ since the value of the second argument in the last recursive call is unknown (or unbounded). However, with the stronger specification given in Figure 3a, with an lower bound $\text{res} > n + 1$ on the function’s returned value, denoted by res, our inference mechanism can replace MayLoop in scenario $m > 0 \land n \geq 0$ by Term $[m, n]$ where $[m, n]$ is a valid lexicographic ranking function. Similarly, without specification, the inference only shows that the McCarthy 91 function terminates in its base case when $n \geq 100$. However, with the specification given in Figure 3b, our inference can prove that the function terminates for all inputs.

While our termination inference mechanism does not directly infer postconditions, it has been made to work with other automated postcondition inference sub-systems, such as [22][59]. Such postcondition inference sub-systems are orthogonal to our proposal, and can be leveraged to provide a more comprehensive solution for fully automated termination and non-termination inference.
Heap-Manipulating Programs. Our inference mechanism can be readily integrated into existing verification frameworks (such as [2], or even shape inference system [31]) that reason about safety properties of heap programs via separation logic [40]. Such an extension can be applied to help prove the termination and non-termination of heap-manipulating programs.

Figure 4 shows the specification and implementation (for the verification) of the method append that concatenates two linked lists x and y. With the separation conjunction $+$ and the points-to operator \rightarrow of separation logic, the heap predicate $\text{lsseg}(\text{root}, q, n)$ represents a list segment from root to q with n elements. This predicate can then be used in the declarations of other predicates, such as $\text{cll}(\text{root}, n)$ for circular lists. Using these two predicates, we can capture two safety specifications of append in Figure 4.

In the first scenario when the input x is a null-terminating list with size n, our inference mechanism is able to show that the method append always terminates with the ranking function $[n]$. In the second scenario where x is a circular linked list, our inference can show that append is definitely non-terminating, after confirming (by induction) that its postcondition can be strengthened to false. These examples highlight the modular nature of our non-termination and termination inference mechanism, which can be built on top of other inference mechanisms.

3. Technical Background

So far we have illustrated a unified specification logic with three known temporal predicates: $\text{Term} \left[\mathcal{P} \right]$, Loop and MayLoop. Semantically, these predicates can be defined using resource capacities (or lower and upper bounds) of execution length, i.e. $\text{Term} \left[\mathcal{P} \right] = \forall \mathcal{P} (\mathcal{L}, \mathcal{U}) \text{ RC}(0, \mathcal{U})$, $\text{Loop} = \forall \mathcal{P} (\mathcal{L}, \mathcal{U}) \text{ RC}(\infty, \infty)$, and $\text{MayLoop} = \forall \mathcal{P} (\mathcal{L}, \mathcal{U}) \text{ RC}(0, \infty)$.

The resource predicate $\text{RC}(\mathcal{L}, \mathcal{U})$ specifies a resource capacity with a lower bound \mathcal{L} and an upper bound \mathcal{U}. It is satisfied by each program state whose resource capacity (t, u) is subsumed by $(\mathcal{L}, \mathcal{U})$, i.e. $\mathcal{L} \leq t$ and $u \leq \mathcal{U}$. Note that the function $f([\mathcal{P}])$ obtains a finite bound through an order-embedding of $[\mathcal{P}]$ into naturals.

Verification conditions involving these temporal predicates can be discharged by a resource consumption entailment $\vdash R$, that is used to account for (lower and upper bound) resources that are utilized by each code fragment. Such entailment can be used to analyze termination or non-termination property for some given method via resource reasoning. Given the temporal constraint θ_r associated with the current program state ρ and the resource constraint θ_ρ (of some code fragment that must be executed), the entailment $\rho \land \theta_\rho \vdash R \land \theta_r$ checks whether the execution resource required by constraint θ_ρ can be met by the execution resource of constraint θ_r, or not. If it succeeds, the entailment will return the remaining execution resource that is denoted by residue θ_r.

In terms of the actual execution capacity, this consumption entailment can be formalized by the following rule:

$$\rho \Rightarrow U_\rho \leq U_{\mathcal{L}} \quad L_\rho = L_\mathcal{L} - L_{\mathcal{U}} \quad U_{\mathcal{U}} = U_{\mathcal{L}} - U_{\mathcal{U}} \quad \rho \Rightarrow L_\rho \leq U_{\mathcal{L}}$$

where two subtraction operators are designed to cater to an integer domain extended with the ∞ value (i.e. \mathcal{N}^∞):

$$L_1 - L_2 \equiv \min \{ r \in \mathcal{N}^\infty \mid r + L_2 \geq L_1 \}
$$

$$U_1 - U_2 \equiv \max \{ r \in \mathcal{N}^\infty \mid r + U_2 \leq U_1 \}, \quad \text{if } U_1 \geq U_2$$

These two operators are essentially integer subtraction operators, except that their results are never negative and such that $\infty - \infty = 0$ and $\infty - \infty = \infty$. They are formulated in this way to give the best (or largest) possible lower and upper bound values to denote the execution capacity of resource. In addition, the subtraction $U_1 - U_2$ requires a check for upper bound execution capacity, namely $\rho \Rightarrow U_\rho \leq U_{\mathcal{L}}$. This check is important to ensure that resource consumption is within the specified upper bound, and will also ensure that the residue is a valid resource capacity.

The resource implication operator \Rightarrow, on execution capacity, used in the implication hierarchy of known temporal predicates, can be defined based on the following subsumption relation:

$$L_1 \leq L_2 \quad U_1 \leq U_2 \quad \text{RC}(L_1, U_1) \Rightarrow \text{RC}(L_2, U_2)$$

From this definition, MayLoop is the strongest pre-predicate in the subsumption hierarchy since it has the maximum execution capacity ($0, \infty$). It can subsume either Loop (with execution capacity (∞, ∞)) or Term $\left[\mathcal{P} \right]$ (with execution capacity $(0, f([\mathcal{P}]))$) predicates. Note that the implication operator \Rightarrow, is only weakly related to the resource consumption entailment operator $\vdash R$, as follows:

$$\theta_r \Rightarrow \theta_\rho \Rightarrow \exists \theta_{\mathcal{L}} \cdot \theta_\rho \vdash \theta_{\mathcal{L}} \land \theta_r$$

For termination and non-termination inference, we have introduced unknown predicates $U_{\mathcal{P}}(\mathcal{P})$ for precondition and $U_{\mathcal{P}}(\mathcal{T})$ for postcondition for each method, with $U_{\mathcal{P}}(\mathcal{T})$ denoting some execution capacity, and $U_{\mathcal{P}}(\mathcal{T})$ specifying reachability of a method with a set of formal parameters \mathcal{T}. To support its inference, we will have to extend the resource entailment procedure to handle entailments between known and unknown temporal constraints.

The most general form of temporal entailment is $\rho \land \bigwedge \mathcal{U}_{\mathcal{P}}(\mathcal{P}) \land \theta_{\mathcal{L}} \vdash \theta_\rho \land \theta_r \land (\theta_r, R)$, where each $\mathcal{U}_{\mathcal{P}}(\mathcal{T})$ is an unknown post-predicate accumulated into the program state after a recursive method call. The temporal constraint $\theta_{\mathcal{L}}$ in the antecedent of the entailment might be an unknown pre-predicate $\mathcal{U}_{\mathcal{P}}(\mathcal{T})$ or a known temporal predicate. The temporal constraint θ_r can be either an unknown post-predicate $\mathcal{U}_{\mathcal{P}}(\mathcal{T})$ or a known predicate. The residue constraint θ_r denotes the residual capacity after entailment. Each relational assumption R for the unknown temporal predicates is a pre-requisite to ensure the validity of the entailment when either $\theta_{\mathcal{L}}$ or θ_r is unknown. It is defined as below.
A. Core Imperative Language

Definition 1. The temporal relational assumption \(\mathcal{R} \) in the residue of a temporal entailment \(\rho \land \bigwedge_i u_{\text{pre}}(\tau_i) \land \theta_a \Rightarrow \theta_e \) can be defined as follows:

(i) \(\mathcal{R} \equiv \text{true} \), if both \(\theta_a \) and \(\theta_e \) are known predicates from \(\{ \text{Term} [\Psi], \text{Loop}, \text{MayLoop} \} \).

(ii) \(\mathcal{R} \equiv \rho \land \bigwedge_i u_{\text{pre}}(\tau_i) \Rightarrow \theta_e \), if \(\theta_e \) is an unknown post-predicate.

(iii) \(\mathcal{R} \equiv \rho \land \theta_a \Rightarrow \theta_e \), otherwise.

This temporal entailment can be integrated into an entailment system with frame \(\Psi \models \Phi \Rightarrow \Psi_s \), to obtain a new entailment procedure of the form \(\Psi \models \Phi \Rightarrow (\Psi_s, \mathcal{S}) \), that also captures in its residue the set of relational assumptions \(\mathcal{S} \) generated by the temporal sub-entailments. The rules to discharge entailments of logic formulas with disjunctions are:

\[
\begin{align*}
\Psi \equiv \bigvee_i \exists \tau : (\rho_i \land \bigwedge_i \theta^i) & \Rightarrow \Psi_i \Rightarrow (\Psi_i, \mathcal{S}_i) \\
\Psi \models \Phi \Rightarrow (\bigvee_i \exists \tau : (\rho_i \land \bigwedge_i \theta^i) \land \theta_a \Rightarrow \theta_e) & \Rightarrow (\theta_e, \mathcal{R})
\end{align*}
\]

B. Generating Temporal Assumptions

In this section, we show how our new entailment procedure is incorporated into Hoare logic to generate a set of relation assumptions over the unknown temporal constraints.

Language. To formalize this task, we provide a core language (Figure 5) with usual constructs, such as data structure declaration \(\text{tdcl} \), method declaration \(\text{meth} \), method call, assignment. This core language does not include the while-loop construct, as it assumes an automatic translation of loops into tail-recursive methods. For int type, we assume the use of arbitrary precision integers.

A method declaration consists of a specification with pre- and post-condition and its body. Primitive/library methods do not have a body and must have their specifications (including termination) pre-declared. For termination and non-termination inference, a pair of unknown pre- and post-predicate are automatically added into the specification of each method whose termination status is unknown.

Hoare rules. To support inference, Hoare judgment is formalized as \(\Psi \models \Phi \Rightarrow (\Psi_s, \mathcal{S}) \), where \(\mathcal{S} \) is a generated set of temporal assumptions. For illustration, we show the rule for method call:

\[
\begin{align*}
\text{TNT-Call} & \\
\text{t0} \text{ mn}(\tau v) & \models \{ \Psi_\text{Pre}, \Psi_\text{Post} \} \{ e \} \models \Psi \text{ Pre} \Rightarrow (\Phi, \mathcal{S}_1) \\
\Psi \models \Psi_\text{Pre} \Rightarrow (\Phi, \mathcal{S}_1) & = \{ \Psi \} \text{ mn}(\tau v) \{ \Psi_s, \mathcal{S}_2 \}
\end{align*}
\]

To facilitate the termination inference, at method calls, we collect only nontrivial assumptions of unknown temporal constraints. We list below trivial relational assumptions, which will be removed by the function \(\text{filter} \) as shown in the rule \(\text{TNT-Call} \).

Firstly, the relational assumption \(\rho \land \theta_a \Rightarrow \theta_e \) is trivial if for any \(\theta_a \) and \(\theta_e \), if the context \(\rho \) is unsatisfiable. Secondly, the assumptions

\[
\begin{align*}
\text{TNT-Meth} & \\
\text{t0} \text{ mn}(\tau v) & \models (\Psi_\text{Pre}, \Psi_\text{Post}) \{ e \} \models (\Psi_s, \mathcal{S}_1) & \Rightarrow \{ \Psi \} \text{ mn}(\tau v) \{ \Psi_s, \mathcal{S}_2 \}
\end{align*}
\]

The \(\text{solve} \) procedure infers definitions for unknown temporal predicates and will be depicted in detail next.

C. Inference Termination and Non-Termination

This section is devoted to the \(\text{solve} \) procedure used to infer the definitions for the unknown pre/post-predicates, based on the set of relational assumptions generated by Hoare-style verification. The overall algorithm is shown in Figure 6.

In this algorithm, \(\Theta \) is used to store the set of definitions inferred thus far for the unknown temporal predicates. Since a key idea of our inference mechanism is case analysis that incrementally separates the terminating and non-terminating behaviors of the analyzed methods, the definition for each unknown predicate might be split into multiple scenarios, for which termination is either known or unknown.

Definition 2 (Unknown Temporal Predicates). During the inference process, the definitions for a pair of unknown pre-predicate
\(U_{pr}(\overline{\tau})\) and post-predicate \(U_{po}(\overline{\tau})\) are of the form
\[
U_{pr}(\overline{\tau}) \equiv \bigwedge(\pi_i \Rightarrow \theta_i^p) \quad \text{and} \quad U_{po}(\overline{\tau}) \equiv \bigwedge(\pi_i \Rightarrow \theta_i^o)
\]
where each \(\theta_i^p\) is either a known or unknown pre-predicate and \(\theta_i^o\) is either \text{true}, \text{false} or an unknown post-predicate. The set of guards \(\{\pi_1, \ldots, \pi_n\}\) must be (1) feasible, i.e. \(\forall \pi \cdot \text{SAT}(\pi)\), (2) exclusive, i.e. \(\forall i, j : i \neq j \Rightarrow \text{UNSAT}(\pi_i \land \pi_j)\), and (3) exhaustive, i.e. \(\forall \pi_1 \lor \cdots \lor \pi_n \equiv \text{true}\).

The initial form of each unknown predicate is the predicate itself with guard condition \text{true}, e.g. \(U_{pr}(\overline{\tau}) \equiv \text{true} \land \text{true}\). At the end of the analysis, all \(\theta_i^p\) and \(\theta_i^o\) become known.

The inference deals with two groups of temporal relational assumptions collected by rule \(\text{TNT-METH}\), namely

1. Pre-assumptions \(S\) collected when proving preconditions at method calls. They can be used to infer (i) ranking functions for termination proving, and (ii) temporal reachability graph that guides our search for proving termination vs. non-termination.
2. Post-assumptions \(T\) collected when proving postconditions contain information about unknown post-predicates. They can be used to infer (i) termination base cases, (ii) inductive unreachability to prove non-termination or (iii) new conditions for the case analysis.

The algorithm in Figure 6 first derives the base case of each analyzed method (line 3), and then refines the definitions of unknown temporal predicates in \(\Theta\) with these newly inferred cases (line 5). After updating the set of relational assumptions (line 7), our algorithm (re-)builds the temporal reachability graph \(G\) from the latest \(S\) (line 8).

For each scc of the graph \(G\) in the bottom-up topological order, the analysis attempts to prove either termination or non-termination or to infer new cases for case-splitting and then updates the set \(\Theta\) with the inferred result (line 10). If every unknown temporal predicate corresponding to the current scc is resolved into known predicates, the inference continues with the next sccs after updating the post-assumptions in \(T\) (line 13) and the graph \(G\) (line 14) with the new inferred known predicates. Otherwise, it restarts the core algorithm (line 11) with the updated \(\Theta\), whose elements have been refined into new sub-cases.

The algorithm halts when every unknown predicate has been resolved or the number of iterations reaches the maximum \(\text{MAX-ITER}\) pre-set by users. In the latter case, the remaining unknown predicates in \(\Theta\) will be marked as \text{MayLoop} by an auxiliary procedure finalize. Next we will explain each inference step in some detail.

5.1 Inferring Base Case Termination

Identifying the conditions for base-case termination is an important first step before any other analyses. Formally:

Definition 3 (Base Case Pre-Condition). Each base case termination precondition of a method must satisfy the following three conditions:

(i) Its method’s exit is reachable from it.

(ii) No mutually recursive method call is met in executions starting from this pre-condition.

(iii) All other method calls encountered from this pre-condition must have been proven to terminate.

While a syntactic-based approach that identifies base-case termination from its control-flow may be sufficient, we propose a semantics-based approach which infers a method’s base case precondition from the two sets of assumptions \(S\) and \(T\) collected from the method, as follows:

\[
\rho = \bigvee \{\rho \cap (\overline{\tau})\} \quad \text{and} \quad \beta = \bigvee \{\beta \cap (\overline{\tau})\} \Rightarrow \theta_i^o \in S
\]

where \(\rho \cap (\overline{\tau}) \equiv \exists \{\text{FV}(\rho)_{\overline{\tau}}\} \cdot \rho\). Using our running example, we have \(S = \{a_2^0\}\) and \(T = \{a_1^0, a_2^0\}\):

\[
\begin{align*}
(a_1^0) & \ x < 0 \land \text{true} \Rightarrow U_{po}(x, y) \\
(a_2^0) & \ x \geq 0 \land x' = x + y \land y' = y \land U_{po}(x', y') \Rightarrow U_{po}(x, y).
\end{align*}
\]

Each post-termination \(\beta \cap (\overline{\tau}) \Rightarrow U_{po}(\overline{\tau}) \in T\), whose antecedent does not contain any unknown post-predicate, capture a potential base-case termination condition. Due to over-approximation, the actual base-case condition (over the method’s parameters \(\overline{\tau}\)) must be formed by such conditions (\(\bigvee \beta\)), conjoined with the negation of contexts (\(\neg \rho\)) for the recursive calls. By identifying the base-case condition in \(a_1^0\) and conditions for recursive pre-assumption in \(a_2^0\), we can precisely infer \(\text{syn_base}(S, T) = x < 0 \lor \neg x > 0\).

With the inferred base case \(\beta = \text{syn_base}(S, T)\) (line 4), we can now invoke the procedure \(\text{refine_base}\) (line 5) to refine (or specialize) the unknown predicates \(U_{po}(\overline{\tau})\) and \(U_{po}(\overline{\tau})\), before updating their definitions in \(\Theta\) (via the operator \(\oplus\)) as shown below.

\[
\begin{align*}
\Delta_{pr} &= \{U_{pr}(\overline{\tau}) \equiv \bigvee (\mu_i \land U_{po}(\overline{\tau}) \lor (\beta \land \text{Term}))\} \\
\Delta_{po} &= \{U_{po}(\overline{\tau}) \equiv \bigwedge (\mu_i \Rightarrow U_{po}(\overline{\tau}))\} \\
\Omega &= \bigcup \{U_{pr}(\overline{\tau}) \equiv U_{po}(\overline{\tau})\} \cup \{U_{po}(\overline{\tau})\}
\end{align*}
\]

Since the method’s termination status in the remaining condition \(\mu = \neg \beta\) is unknown. In the new definitions of \(U_{pr}(\overline{\tau})\) and \(U_{po}(\overline{\tau})\), each pair of fresh predicates \(U_{pr}(\overline{\tau})\) and \(U_{po}(\overline{\tau})\) is associated with a unique \(\mu_i\) in the disjunctive normal form of \(\mu\). For our running example, this refinement leads to:

\[
\begin{align*}
U_{pr}(x, y) & \equiv x < 0 \land \text{Term} \lor x \geq 0 \land U_{po}(x, y) \\
U_{po}(x, y) & \equiv x < 0 \lor \text{true} \land x \geq 0 \Rightarrow U_{po}(x, y)
\end{align*}
\]

After the unknown predicates have been updated with base-case termination conditions, we transform the sets of relation assumptions by using the procedure \(\text{spec_relass}\) (line 7) described next.

5.2 Specializing Relational Assumptions

Whenever some unknown predicates in \(\Theta\) receive new definitions, our inference algorithm will update its sets of relational assumptions with the procedure \(\text{spec_relass}\). Its first parameter is a set of relational assumptions. Its second parameter \(\Theta\) contains the definitions of unknown predicates.

For each relational assumption with unknown predicates, the procedure \(\text{spec_relass}\) finds the current definitions of these unknown predicates in \(\Theta\) and substitutes them directly into the assumption. As the definition of each unknown predicate consists of exclusive and complete guards, we can further split each substituted assumptions into multiple specialized assumptions. We show below just one example where \(\text{spec_relass}\) is called with a new pre-assumption with two unknown predicates.

\[
\begin{align*}
U_{pr}(\overline{\tau}) & \equiv \bigvee_{i=1}^{n} (\rho_i \land \theta_i^{a_1^1}) \in \Theta \\
U_{po}(\overline{\tau}) & \equiv \bigvee_{j=1}^{m} (\pi_j \land \theta_j^{a_2^2}) \in \Theta \\
\Delta & \equiv \{\rho_i \land \pi_j \land \theta_i^{a_1^1} \Rightarrow \theta_j^{a_2^2} \mid 1 \leq i \leq n, 1 \leq j \leq m\} \\
\text{spec_relass}(\rho \cap (\overline{\tau}), \Theta) & \equiv \Theta \cup \{\Delta\}
\end{align*}
\]

For our running example, the relational assumption \(\{a_2^0\}\) was specialized by its earlier partial definition into two more specialized assumptions: \(\{a_2^0\}\) and \(\{a_2^2\}\).
5.3 Resolving Temporal Reachability Graph

The core of our inference algorithm (in Figure 6) incrementally resolves the unknown predicates present in the (specialized) relational pre-assumptions. If its attempt fails, it would also derive conditions for the next case analysis. This core algorithm uses a reachability graph \(G \), constructed from pre-predicates in \(S \), to guide its proof search. Formally:

Definition 4 (Temporal Reachability Graph). Given a set of pre-assumptions \(S \), a temporal reachability graph \(G = (V, E) \) is constructed from a set of vertices \(V \) and a set of labeled edges \(E \), as follows. For each pre-assumption \(\rho \exists_0 \in S \), we add two vertices \(\theta_0 \) and \(\theta_0 \) into \(V \) and an edge \(\theta_0, \rho, \theta_0 \) from \(\theta_0 \) to \(\theta_0 \), labeled by \(\rho \) into \(E \).

For example, the two graphs \(G_1 \) and \(G_2 \) are built for the inference of \(G_1 \) and \(G_2 \). \(G_1 \) is constructed from pre-assumptions \(\rho(0_2) \) and \(\rho(0_1) \), obtained after base case inference. The edges of \(G_2 \) are labeled by \(\rho(0_2) \) and \(\rho(0_1) \). The contexts in \((0_2, 0_1) \) and \((0_1, 0_2) \) are labeled by \(\rho(0_2) \) and \(\rho(0_1) \), respectively. Similarly, the graph \(G_2 \) is constructed from pre-assumptions \((a_1, a_2) \) and \((a_2, a_1) \) after a new case split.

As the core algorithm firstly partitions \(G \) into strongly connected components \((scc) \). These are dashed boxes in \(G_1 \) and \(G_2 \), whereby each unknown temporal predicate denotes an unknown behavior. Moreover, this unknown predicate is mutually dependent on the other predicates in the same \(scc \). Using a bottom-up approach, the inference mechanism processes each \(scc \) in a topologically sorted order. With this approach, termination and non-termination proofs for phase-change programs [12] and that for mutual recursion are easily supported.

Definition 5 (\(scc \)’s successors). Given a graph \(G \), the outside successors of a \(scc \) in \(G \) is the set of all successors of any vertex in this \(scc \) but excluding the itself \(scc \).

\[
\text{succ}_scc(G, \Theta) = \bigcup \{ \text{succ}(v, G) \mid v \in \text{succ} \} \setminus \text{succ}
\]

where \(\text{succ}(v, G) \) returns all successors of the vertex \(v \).

Our core algorithm, named \(\text{TNT_analysis} \), for manipulating each \(scc \) is outlined in Figure 7. After this analysis, all vertices in the \(scc \) are resolved as known temporal predicates, our procedure returns the result \(r = \text{true} \). Otherwise, it returns \(r = \text{false} \) to allow inference mechanism to restart for the next iteration (from line 24 in Figure 7). Moreover, upon termination of this procedure, some unknown pre- and post-predicates in store \(\Theta \), are updated with their new definitions.

Our procedure (Figure 7) uses the set \(\mathcal{O} \) of the \(scc \)’s successors to determine whether termination proof (by sub-procedure \(\text{prove_Term} \), or non-termination proof (by \(\text{prove_NonTerm} \)), should be applied to resolve the unknown temporal predicates. Specifically, when the \(scc \) has only one unknown node \(\mathcal{U} \), without any cyclic edge and successor (line 20), we resolve the unknown pre-predicate \(\mathcal{U}_pr \) and its corresponding post-predicate \(\mathcal{U}_pr \) for trivial termination (line 22). Moreover, when the set \(\mathcal{O} \) is nonempty, the procedure invokes \(\text{prove_Term} \) with ranking function synthesis only if every element of \(\mathcal{O} \) is a known \(\Theta \) predicate (line 24-25).

For the running example, the procedure applies termination proofs for the left \(scc \) in \(G_1 \) and the middle \(scc \) in \(G_2 \). For the left \(scc \) in \(G_1 \), it applies a non-termination proof directly. In the next sub-sections, we present the sub-procedures for proving termination and non-termination over a \(scc \).

5.4 Inferring Ranking Function

For proving termination on a \(scc \), we implement the procedure \(\text{prove_Term} \) (sketched in Figure 6) to find a linear ranking function for each unknown pre-predicate in this \(scc \) by using a constraint-based technique [21, 22, 37, 41] with Farkas’ lemma [42].

Initially, we create a unique ranking function template for each unknown pre-predicate \(\mathcal{U}_pr(v_1, \ldots, v_n) \in \text{succ} \) by the procedure \(\text{gen_rank} \).

\[
\text{gen_rank}(\mathcal{U}_pr(v_1, \ldots, v_n)) = c_0 + \sum_{i=1}^{n} c_i v_i
\]

where \(c_0, c_1, \ldots, c_n \) are unknown coefficients of the ranking function. Next, we generate a set of constraints over these ranking functions from every edge in \(G \) that connects two nodes in the \(scc \) (line 30). That is, given an edge \(e \equiv (\mathcal{U}_pr(v), \rho, \mathcal{U}_pr(v)) \in \mathcal{E} \) s.t. \(\mathcal{U}_pr(v) \in \text{succ} \), the constraint generated from it is

\[
\forall i. r_i(\mathcal{U}_pr(v)) = \text{gen_rank}(\mathcal{U}_pr(v)) \quad r_i(\mathcal{U}_pr(v)) = \text{gen_rank}(\mathcal{U}_pr(v))
\]

This constraint indicates that the ranking function \(r_i(\mathcal{U}_pr(v)) \) is bounded and decreasing across a (mutually) recursive method call under the call context \(\rho \). For example, the constraint generated from the middle \(scc \) in \(G_2 \) is

\[
\forall x, y. x \geq 0 \land x' = x + y \land y' = y \land x' \geq 0 \land y < 0 \Rightarrow
\]

\[
r(x, y) > r(x, y') \lor (r(x, y) \geq 0)
\]

which is then solved by \(\text{syn_rank} \) to obtain the ranking function \(r(x, y) = x \). The method \(\text{syn_rank} \) (line 31) solves the generated constraints by applying Farkas’ lemma on them to obtain another set of constraints over their unknown coefficients, which can be solved by a nonlinear solver, such as [27], to get the actual values of these constraints.

If the proof succeeds for all pre-predicates in `scc` (signified by `r` in line 40), we mark the unknown termination status as definitely non-terminating. This procedure thus refines, where possible, each unknown pre-predicate as `U_{fp}(\Theta) = Loop` and its post-predicate as `U_{fp}(\Theta) = false` (line 41) and updates `\Theta` before returning `true`.

For our running example, `(a_1')` and `(a_2')` from `T` would cause `prove_NonTerm(scc, T, \Theta)` to return false, but provide an inductive non-termination `\gamma \geq 0` that facilitates case-splitting (see next subsection). In contrast, `(a_1^2)` would be used to show that `U_{fp}(x, y)` is inductively `false` (or unreachable).

5.6 Case-Splitting

If non-termination proving fails, the method `abd_inf` abductively infers new sub-conditions from the failed proof to refine the potential non-termination condition by case-split. In the case `t \equiv \rho \land \text{true} \Rightarrow (\mu \Rightarrow U_{fp}(\Theta))`, if the proof fails, i.e., `\rho \land \mu \Rightarrow false`, `abd_inf(t)` simply returns `{}` as any condition that makes the entailment to hold would contradict with the antecedent `\rho \land \mu`.

If `t \equiv \rho \land (\eta_i \Rightarrow false) \land (\mu_i \Rightarrow U_{fp}(\Theta)) \Rightarrow (\mu \Rightarrow U_{fp}(\Theta))`, and the proof fails, i.e., `\rho \land \eta_i \land \text{false}` the `abd_inf(t)` returns a set of conditions `C_i` such that, for each `\eta_i \in \{\eta_i\}_{i \in \mu} k` s.t. `\rho \land \mu \land \exists \eta_i` is satisfactory, there exists `\alpha_k \in C_i` such that `(\rho \land \alpha_k \land \mu)`, and `(\eta_i \land \text{false}) \Rightarrow (\mu \land \alpha_k)`. That is, if the potential non-termination condition `\mu` of the caller is strengthened by `\alpha_k` then the (potential) non-termination condition `\beta_k` of a callee is satisfied.

For each condition `\beta_k`, the solution `\alpha_k \equiv \beta_k` is a trivial but the weakest solution for `\alpha_k`. For a more effective case-split, we aim to derive a stronger abductive condition `\alpha_k`. By the same constraint-based approach used for the ranking function synthesis, we assume the template `\alpha_k \equiv \Sigma_i \geq 0 \cdot v_i \cdot (\eta_i \lor \text{false})` with `v_i` being unknown coefficients with additional optimal constraints, e.g. the number of zero-coefficients is maximum, so that we can obtain a better solution with minimum number of program variables.

Given a set of collective abductive conditions `C`, the procedure `subtain(C, u_{fp}(\Theta), U_{fp}(\Theta))` with these new sub-cases for the update of `\Theta`.

As the conditions in `C` might be overlapping, we use the function `split` defined below to partition these conditions into the new set of mutually exclusive conditions `{\mu_j}_{j=1}^{m+1} \cup \{\nu_{1}, \ldots, \nu_{m}\} \cup \{\nu_{m+1}\} \equiv \Omega`, if it is satisfactory, to cover the missing case, so that `{\mu_j}_{j=1}^{m+1}` is complete.

```markdown
\text{split}(C) = \{\mu_j\}_{j=1}^{m+1} \cup \text{split}(C) = \{\nu_1, \ldots, \nu_m\} \cup \text{split}(C)
```

6. Experiments

We have implemented the proposed inference mechanism on top of HiP+TNT\[23\], an existing verification system that can verify both termination and non-termination specifications given by users. The new inference system HiP-TNT+ and this paper’s artifact are available for both online use and download at http://loris-7.ddns.comp.nus.edu.sg/~project/hiptnt/plus/
7. Related Work

Over the last decade, there has been a large body of work on proving program termination. Most of these termination provers, such as TERMINATOR [12] and its successor T2 [13], ARM [16], TAN [28] and ULTIMATE [25], either show that a program terminates for all (given) inputs or return a counterexample to termination upon the failure of termination proofs. However, due to the incompleteness of termination-based techniques, these provers cannot guarantee that every returned counterexample (from failed termination proofs) leads to a definitely non-terminating execution. Thus, each tool might deploy a separate non-termination proving technique to prove that the counterexample is feasible. Also, each such counterexample is only an under-approximation of its program execution, so that it does not capture the wider scenarios for non-terminating behaviors of the analyzed program.

We have also seen much related work on proving program non-termination, e.g. [1, 6, 8, 23, 30, 34, 46]. Non-termination provers, such as TNT [23] and INVEL [46], attempt to disprove program termination by searching for some initial configurations that act as witnesses for non-termination. To find a wider class of non-termination bugs, these approaches attempt to discover sufficient pre-conditions for non-termination. Nevertheless, since non-termination proving techniques are also incomplete, the analyzed program is not guaranteed to terminate under the complement of the inferred pre-condition for non-termination.

The dual problem of conditional termination, first addressed in [14], identifies initial configurations that ensure termination. In [14], such termination preconditions are derived from potential ranking functions, which are bounded but not decreasing. Later, the tools of FLATA [4] and ACABAR [19] infer the sufficient precondition for termination from (the negation on over-approximation of) the set of initial states from which the program might not terminate. However, FLATA differs from ACABAR by limiting itself to classes of loops with restricted forms in which the precise non-termination conditions are definable.

8. Conclusion

We have proposed a modular inference framework for program termination and non-termination. By incorporating unknown pre/post-conditions into specification logic for termination reasoning, our proposed framework employs a Hoare-style forward verification to collect a set of relational assumptions to help soundly discover termination and non-termination properties. Our technique analyzes program termination and non-termination at the same time, and constructs a summary of these behaviors for each method. This enables better modularity and reuse for our proving processes. Furthermore, as seen in the experiments over SV-COMP 15 benchmarks, our tool compares favorably against current state-of-the-art termination analyzers.

We shall now discuss two current limitations of our tool. Firstly, our tool handles non-deterministic inputs by identifying conditional statements that directly depend on non-deterministic values. Each such non-deterministic conditional is marked as non-terminating if either of its two branches is non-terminating. This works for most examples, but is less general than the proposal in [3]. Secondly, while we support lexicographic linear ranking functions (LLRF) in
our termination reasoning, we cannot handle programs that critically depend on Ramsey’s theorem or those that are based on size-change principles but do not have LLRF counterpart. It would be interesting to explore future extensions to our specification logic to better support non-determinism and these other kinds of termination proofs.

Acknowledgements: We thank the reviewers for their insightful suggestions. We are grateful to Long H. Pham, Quang-Trung Ta, Quang Loc Le, Andreea Costea and Zhuohong Cai for their help in preparing HirTNT+ for the SV-COMP 2015 competition. This work is supported by the MoE Tier-2 grant MOE2013-T2-2-146.

References