This full version, available on TeesRep, is the authors’ post-print version.
For full details see: http://tees.openrepository.com/tees/handle/10149/594473
The comparison and application of silicone casting material for trauma analysis on well preserved archaeological skeletal remains

Jenna M. Dittmar¹*, David Errickson², Anwen Caffell³,⁴
*Correspondence author

¹ Department of Archaeology and Anthropology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge CB2 1QH

² School of Science and Engineering Teesside university, Borough Road, Middlesbrough TS1 3BA

³ Department of Archaeology, Durham University, Dawson Building, Department of Archaeology, South Road, Durham DH1 3LE

⁴ York Osteoarchaeology, Ivy Cottage, 75 Main Street, Bishop Wilton, York YO42 1SR

Corresponding author: Jenna M. Dittmar
Correspondence email: jjdd2@cam.ac.uk
Phone: +44 (0)7415 183226
The comparison and application of silicone casting material for trauma analysis on well preserved archaeological skeletal remains

Highlights

- Three silicone-based casting products were compared to identify which was the least destructive and the most effective in recovering tool marks
- A comparison of the application and the effect of the products on bone revealed that not all casting products are safe to use on skeletal remains
- The microscopic analysis of silicone casts allow for the identification of tool marks previously undetected macroscopically
The comparison and application of silicone casting material for trauma analysis on well preserved archaeological skeletal remains

*Corresponding author email jjdd2@cam.ac.uk

ABSTRACT

The analysis of tool marks in bone is important in both archaeological and forensic examination to enhance our knowledge of the funerary context. Some tool mark characteristics are difficult to identify macroscopically and often additional imaging equipment is needed. Microscopic analysis of trauma has proven to be beneficial in determining individual characteristics of tool marks. However, due to the sample size restrictions or pre-analysis treatment of the sample, microscopy is not commonly used to analyse trauma on archaeological skeletal remains. The creation of casts of the tool marks is an obvious solution, but often the perceived risk of damaging the skeletal remains deters its use. Casting materials are used by many forensic scientists but there is little mention within the literature on the effectiveness of using these products to record tool marks on archaeological skeletal remains. This research used three commonly used silicone-based casting products, Xantopren L blue, Mikrosil, and Alec Tiranti RTV putty silicone, to record tool marks in modern and archaeological bone. Forty-five casts were analysed to identify which product is the least destructive and most effective in recovering tool characteristics from the skeletal remains. The results show that all of the products tested were able to replicate blade trauma and allowed the affected area to be analysed in greater detail. A comparison of the application and the effect of the products on bone revealed that Alec Tiranti putty was the best product to use on well preserved archaeological remains. Although the creation of casts using Alec Tiranti putty took longer in comparison to the other products, it did not damage the cortex of archaeological bone whereas this was not the case with Xantopren and Mikrosil. To demonstrate these results on human skeletal remains, Alec Tiranti putty was used to cast peri-mortem modification on an Iron Age cranium from Peterborough, Cambridgeshire. These casts were non-destructive and allowed for previously unidentified tool marks to be discovered.

Keywords: Tool marks; SEM; knife marks; sharp-force trauma; peri-mortem trauma; Iron Age

1. INTRODUCTION

The analysis of sharp-force trauma, specifically, tool marks on human skeletal remains is important in both archaeological and forensic contexts (Andahl, 1978; Bonte, 1975; Fiorato, 2000; Mitchell et al., 2011; Thompson and Inglis, 2009; Symes and Berryman, 1989; Schultz, 2003; Symes et al., 2010; Shipman and Rose, 1983). The analysis of tool marks from archaeological sites has allowed for great advancements in our knowledge of funerary practices (White, 1986), type and effectiveness of stone tools (Domínguez-Rodrigo et al., 2009), butchery practices (Perez et al., 2005; Johnson and Bement, 2009; Garvey et al., 2011; Thompson and Henshilwood, 2014), and post-mortem medical intervention (Dittmar and Mitchell, 2015; Witkin, 2011).

Drawings, exact measurements, and photographic imaging are primarily used to record these features (Errickson et al., 2014). In recent decades scanning electron
microscopes (SEM) have been utilised to enhance the detail of traumatic lesions (Rose, 1983; Tucker et al., 2000; Domínguez-Rodrigo, 2009; Sansoni et al., 2009; Symes et al., 2010; Reichs, 1998; Bromage 1984). However, there are a number of limitations to using this type of equipment. For example, the equipment’s standoff height (the distance between the stage and lens or beam), can often be a limiting factor, as intact human remains cannot be placed into the average sized SEM chamber. Secondly, some SEMs require the sample to be coated prior to the analysis (Alunni-Perret et al., 2005). This is especially problematic if the remains are human or are from a forensic context. As an alternative, casts have been used to record the traumatic lesions in its three dimensions. The casting material retains the characteristics of the tool mark when removed from the bone in the form of a direct negative.

First outlined by Rose (1983), casting archaeological bone has several advantages, including the portability of casts, and the ability to fit them inside the restrictive chambers of certain microscopes. This in turn, allows for the samples to be analysed under increased magnification (Rose 1983). Prieto (2007) noted that some individual elements become visible even if they have previously gone unnoticed during macroscopic examination. Even though the advantages of analysing tool marks on human skeletal remains microscopically are well established casting is still not utilised to its full extent due to the perceived limitations and conservation concerns.

The most pressing concern of casting archaeological bone is that the casting material may remove the cortex when the cast is removed. The inverse situation, the inability to remove all of the casting material or the staining of the bone by colored materials, is just as undesirable. The literature discussing these issues on archaeological material is rare and often conflicting. Shipman (1981) recommended the use of Xantopren for museum objects but Cook (1986) warned that casting materials such as Xantopren blue may stain archaeological artifacts. There is no mention if these risks are likely to increase if the bone is unfossilised or not perfectly well preserved. The reported limitations of casting within the forensic literature, such as the possibility that casting materials may not recover all of the morphology of a wound (Thali et al., 2003), raise further questions about the suitability of this technique for archaeological remains.

Although various casting products have been utilized by archaeologists since the 1970s, a comparative study has never been undertaken to test the suitability of various casting products for archaeological skeletal remains. This research utilised three silicone-based products as recommended by Du Pasquier et al. (1996) for tool marks. Specifically, Xantopren L blue, Mikrosil, and Alec Tiranti RTV putty silicone were used for recording tool marks on modern and moderately well preserved archaeological bone. The aim of this research is to determine whether casting techniques are useful in providing additional information in comparison to macroscopic analysis, and to assess the destruction and conservation implications when using this material on archaeological skeletal remains.

2. MATERIALS AND METHODS

2.1 Materials

Three sheep femora were macerated and divided into four sections using a hacksaw. The epiphyses were discarded and a series of three incisions, approximately 2cm apart
were made on each shaft using an alternate-set hacksaw. A total of nine saw incisions were created. Each of the incisions was made by a single pass of the saw so that an individual saw stria was produced. In addition, six animal bones that displayed evidence of butchery from the Victorian excavation at Preston Kitchen Garden, Middlesbrough (Daniels, 2011) were selected for analysis. The state of preservation of these bones was visually assessed to be in moderate condition with some post-mortem erosion and flaking of the cortex on long bone shafts. The margins of articular surfaces and some prominences are also eroded. The state of weathering according to Behrensmeyer (1987) was designated as phase 2.

The silicone-based casting products used were Xantopren L blue, Mikrosil, and Alec Tiranti RTV silicone putty. Mikrosil is a two-part casting putty that hardens when mixed together which is marketed as being ideal for 'shallow marks with small details, requiring large magnification' (product description). Xantopren L blue is a double mix polysiloxane precision casting material that sets when mixed with a hardener. The silicone putty made by Alex Tiranti Ltd is a two-part compound that also requires the putty and a catalyst to be mixed by hand.

The silicone products were used in rotation to cast the tool marks present on all nine of the incisions located on the sheep bone and all 6 of the archaeological bones. Each casting material was applied in a rotating order on each incision so that any negative effects (either removal or staining of the cortex) could be identified for each substance without risk of any contamination from a previous application (Table 1). A total of 27 casts were made from the trauma on the modern bone and 18 were created of the trauma from the archaeological bone.

Table 1: Showing the rotation order of the casting material, (Xantopren L blue (X), Mikrosil (M), Alec Tiranti RTV silicone putty (AT), on the modern samples (MOD) and the archaeological samples (PKG).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Casting Order</th>
<th>Sample</th>
<th>Casting Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD1_1</td>
<td>AT</td>
<td>X</td>
<td>M</td>
</tr>
<tr>
<td>MOD1_2</td>
<td>AT</td>
<td>X</td>
<td>M</td>
</tr>
<tr>
<td>MOD1_3</td>
<td>AT</td>
<td>X</td>
<td>M</td>
</tr>
<tr>
<td>MOD2_4</td>
<td>X</td>
<td>M</td>
<td>AT</td>
</tr>
<tr>
<td>MOD2_5</td>
<td>X</td>
<td>M</td>
<td>AT</td>
</tr>
<tr>
<td>MOD2_6</td>
<td>X</td>
<td>M</td>
<td>AT</td>
</tr>
</tbody>
</table>

2.2 Methods

2.2.1 Preparation procedures

The Mikrosil paste was mixed with the catalyst in a ratio of 3:2 on a plastic tray using a plastic spoon. The putty was mixed until the mixture began to thicken slightly (approximately 20 seconds) and then immediately applied on the affected area of the bone. The casts were allowed to set for 30 minutes (but were hardened within 3 minutes) and then carefully removed. Xantopren L blue paste was mixed with a
hardener at a ratio of 3:2 using the same methods described for the Mikrosil. These casts had set within 5 minutes and were then removed. The putty silicone by Alec Tiranti was mixed in a 1:10 ratio of catalyst to putty, as per instructions. The 2 substances were kneaded together with gloved hands until thoroughly mixed and the color became a uniform yellow. The putty was then placed onto the affected area and pressed down lightly to ensure the putty filled the kerf. The casts were left to cure for 60 minutes before removal.

2.2.2 Removal and Analysis
All modern and archaeological bones and 45 casts were macroscopically assessed and then microscopically analysed using a Hitachi TM3000 Tabletop SEM. The surface of the bone was visually assessed after the removal of each cast so that any damage to the bone could be identified. Each cast was also examined immediately following removal for structural integrity (i.e. any gaps in the casting material due to air bubbles or tearing due to improper mixing) and for the presence of cortical bone and other casting material. Any defects in the casting material or adherent cortex were recorded. Following SEM analysis, all images were examined for evidence of damage to the bone’s cortex and to observe whether the casting material could accurately capture the exact characteristics of the tool mark.

The overall suitability of each casting material was assessed by averaging the scores of both the technical application of the material, and the effect each product had on the osteological remains when the casting material was removed. The time required for each material to set was also recorded. Each category was judged on a 1-3 scale (see Table 1).

3. RESULTS
3.1 Technical Application of Materials
When mixing Xantopren it was difficult to approximate the amount of catalyst required to achieve the desired texture, which influenced the application. When the amount of catalyst was underestimated the mixture did not set making it difficult to apply to target area. Similar difficulties were found when estimating the catalyst to paste ratio with Mikrosil, however the opposite effect occurred and the mixture rapidly set before it could be applied to the bone. No problems were encountered when mixing the putty by Alec Tiranti or applying the material. Mikrosil had the shortest time required to set (2-4 minutes), followed by Xantopren (4-8 minutes) followed distantly by Alec Tiranti putty which required 45-60 minutes. All of the completely set casts from all three materials were easily removed from the bone surface.

3.2 Assessment of Damage to Bone Surface
The 27 casts made from the modern bone samples did not show any evidence of removing the cortex during removal. More surprisingly, of the 18 archaeological casts examined, none of them appeared to remove bone cortex. These results were confirmed by the SEM analysis of the bones’ surface following casting. 66.6% (4/6) of the Alec Tiranti casts did pick up a large amount of soil that was adhered to the bone, especially from within the medullary cavity. In two cases the adhered soil obscured the tool marks and required a further two casts to be repeated.
3.3 Staining and Visible Residues
After the removal of Mikrosil casts, a brown residue was present on 40% (6/15) of the casts made on the modern and archaeological bone. Staining appeared on 22% (2/9) of the casted areas on modern bone and on 66% (4/6) of the casted areas on the archaeological bone. This residue was not always apparent to the naked eye as an additional case where a residue was left on an archaeological bone was detected by brown residue on an Alec Tiranti cast, which stained the cast brown. Similarly, Xantopren L blue also left behind a residue on the cortex of both the archaeological and modern bone. Blue residue was also picked up by the Alec Tiranti putty on 33% (3/9) of casting sites on modern bone and on 50% (3/6) of the areas casted on the archaeological bone. No evidence of permanent staining was caused by Alec Tiranti putty (see discussion).

Figure 1: Alec Tiranti putty cast of trauma showing adhering Xantopren L blue removed from the surface of an archaeological bone

Figure 2: Archaeological bone showing staining from Xantopren L blue and Mikrosil

3.4 Analysis of the Cut Marks and Visibility of Features
All of the 45 casts created on both modern and archaeological bone replicated the tool mark on each sample. The characteristics of the tool marks were easily identifiable across all three types of silicone material. In addition, SEM analysis identified additional tool marks on two archaeological samples that were not seen macroscopically.

Figure 3: SEM composite micrograph (x30) of kerf number 7 in modern bone

Figure 4: SEM composite micrographs (x30) of casts made of kerf 7 with a) Alec Tiranti putty silicone b) Mikrosil and c) Xantopren L blue

Table 2: Comparison of Xantopren L blue, Mikrosil and Alec Tiranti casting material on modern and archaeological bone assessing the technical application of material and the effect of the product on osteological material
4. DISCUSSION

4.1 Technical Application of Materials

Several problems were encountered when mixing and applying Mikrosil and Xantopren, but not when mixing the Alec Tiranti putty. The mixing process of Alec Tiranti is guided by visual cues in the form of a change in colour. This visual change in color ensures the appropriate mixing duration. The golden yellow catalyst material is mixed with the white putty until the mixture is a uniform pale yellow colour. The colour change also can be used as a guide to ensure the appropriate ratio of catalyst to putty. The lack of visual cues when mixing the catalyst and the paste in Mikrosil and Xantopren likely contribute to the improper mixing and thus, the problems encountered during application.

An effect of improper mixing was encountered through the creation of air pockets within the casting material. The air pockets created ‘gaps’ within the cast of the kerf resulting in the loss of some information (Figure 3). These air pockets are a result of the casting material not completely filling the tool mark or the incomplete mixing of the casting material and catalyst. These results echo Thali et al. (2003) who stated ‘some fine details of the wound morphology often cannot be recorded.’ This is a concern because important information may remain unrecorded. However further impressions of the same area can be made to ensure this is not an issue. All of the products had at least one cast that had to be redone because the cast did not reach the bottom of the kerf floor. These ‘air gaps’ seem to be more dependent on the way the putty is applied by the user, rather than the product itself. Practice with the material is recommended before replicating the methods used in this study on archaeological material.

<table>
<thead>
<tr>
<th>Technical application of material</th>
<th>Xantopren</th>
<th>Mikrosil</th>
<th>Alec Tiranti</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Set Time</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Removal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Effects on osteological material</td>
<td>Damage to cortex</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Staining</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Air gaps</td>
<td>2*</td>
<td>2*</td>
<td>2*</td>
<td></td>
</tr>
<tr>
<td>Suitability for use on bone</td>
<td>2</td>
<td>1.71</td>
<td>1.43</td>
<td></td>
</tr>
</tbody>
</table>

*Dependant on application and correct mixing
The clean removal of the casts shows that the possibility of well-preserved bone being destroyed or the removal of the bone’s cortex is not an issue. Although this method is a contact technique, the results show none of the bone’s morphological appearance was altered with any of the casts. This is important because this technique has largely been unused due to these concerns, but these results show that these concerns can now be dismissed. Although all of the products tested had limitations, none of them caused physical damage to the cortex of moderately-robust archaeological bones during the removal process.

An additional consideration of these materials is cost. Alec Tiranti (which is demonstrated to be the most appropriate) costs approximately £27.00 where Xantopren L blue costs significantly more at around £74.00. The least expensive product to purchase is Mikrosil which costs around £23.00. Therefore, on top of Alec Tiranti’s applicable advantages, the material is also affordable.

4.2 Effect of the Products on Osteological Material
Staining and residues left on the cortex proved to be the greatest conservation concern. Cook (1986) stated that material like Xantopren L blue might stain an object, which was supported in our research. These results also show that staining was a problem when using Mikrosil on both archaeological and modern bones. Therefore, the authors caution against Xantopren L blue and Mikrosil for use on archaeological skeletal material. No staining was recorded on the bones when using the Alec Tiranti putty. However, it should be noted that the presence of a clear residue or ‘wet’ spot was temporarily present at the location of the cast on the cortex of some of the archaeological bones. These stains were greasy to touch and were the result of using too much of the catalyst in the mixture. Although additional experiments can be undertaken to analyse whether there was any chemical composition change to the bone as a result of this, visually the bone remained unaltered and the stain disappeared almost immediately. Therefore the research demonstrates that Alec Tiranti can be safely used to cast tool marks on robust skeletal remains.
4.3 Replication and Analysis of Cut Marks

All of the correctly casted tool marks replicated the intended trauma. In addition to the tool marks recorded, the casts also recovered characteristics that were previously unnoticed macroscopically. Likewise, as the casts are replicating the lesion, measurements can be taken allowing the collection of depth, shape, and topography data for further quantitative evaluation. Measurements taken, e.g. on the kerf width, may give additional information on the type of blade used (Symes et al., 2010). Substantially, the cut mark can be documented indefinitely allowing analysis even long after the skeletal remains have degraded or been reburied. This can have a large impact on the analysis of skeletal trauma as additional unrecorded tool marks may be present that in turn provide further contextual information.

![Figure 6: SEM micrograph (x30) showing the saw mark characteristics and the kerf width measurement](image)

4.3 Case Study

![Image 7: Reconstructed cranium of burial 90 from Stanground South, Peterborough, Cambridgeshire](image)
To demonstrate the results of this research an Iron Age cranium excavated at Stanground South, Peterborough, Cambridgeshire [burial 90] that exhibited several peri-mortem modifications was selected for analysis (Taylor, Unpublished). The cranium, although initially fragmented, had been reconstructed prior to analysis. Therefore, any analysis using instruments with a low standoff height (such as an SEM) could not be accomplished. Consequently, the authors took casts using Alex Tiranti putty on several significant locations across the cranium using the method discussed in this paper.

Upon removal of the casting material the cranium was neither modified nor damaged. The casts were then observed under a SEM at 40x-100x magnification. These micrographs clearly showed the intended tool marks on the cranium. Interestingly several additional tool marks that had been previously unnoticed were also observed (Figure 6). Furthermore, the results showed the use of more than one tool. These findings are similar to those by Prieto (2003) who discussed the visualisation of previously unseen marks. This is important because aspects of the purposeful alteration of the Stanground cranium may have never been visualised without this casting method. This case study demonstrates the value of casting for revealing additional unseen information without damaging the cortex.

5. CONCLUSION
Silicone casting material has been sporadically used for casting a range of objects. With regards to archaeological human remains, a comparison of the different silicone
casting materials has never been previously undertaken. In this study it is
demonstrated that although the Alec Tiranti putty took longer to apply and set in
comparison to the other techniques used, it did not damage the cortex or the bone
when lifted from the surface unlike the Xantopren and Mikrosil methods which
stained the cortex blue and brown respectively. This additional time constraint is
meaningless if the necessity to conserve bone is taken into consideration. Therefore,
although practice with the material is recommended before replicating cut marks in
bone, Alec Tiranti can be safely used based on the results of this research.

The results of this research may have a great impact on how blade trauma on
archaeological material is analysed. Blade trauma is primarily analysed visually while
microscopic analysis is often rejected due to the sample size limitations. Most
commonly, in archaeological assemblages blade trauma is identified on the skull, but
large items such as crania cannot be placed within most SEM chambers due to the
machine’s standoff height. The creation of impressions is an obvious solution, but
often the perceived risk of damaging the element deters its use. However, the results
of this research show that silicone casts allow for sharp force trauma to be recorded
and analysed in greater detail while not damaging modern or archaeological samples.
Further research is required to assess the chemical integrity of the bone and how
contact with the casting materials may affect other analyses.

The authors agree casting would be ideal to document the morphology of sharp-force
trauma especially if the remains are rapidly deteriorating or to be reburied. This
allows additional analysis that otherwise may not be possible.

5.1 Considerations
The authors advise caution when using these methods on fragile objects and
recommend further experiments are undertaken before casts on fragile objects become
commonplace.

6. ACKNOWLEDGEMENTS
The authors would like to express their gratitude to, Malin Holst (York
Osteoarchaeology) and Ed Taylor (Museum of London Archaeology Northampton)
for access to the cranium from Peterborough, Tees Archaeology for access to the
animal butchery bones, and Ken Robinson for all his assistance with the Scanning
Electron Microscope. We would also like to thank the reviewers for their helpful
comments.

7. REFERENCES
Alunni-Perret, V., Muller-Bolla, M., Laugier, JP., Lupi-Pegurier, L., Bertrand, MF.,
Staccini, P., Bolla, M., Quatrehomme, G., 2005. Scanning electron microscopy
analysis of experimental bone hacking trauma. Journal of Forensic Science. 50 (4),
pp. 796-801.
Society. 18, pp. 31-46.

Thali, M.J, Braun, M., Brueschweiler, W., Dirnhofer, R., 2003a. ‘Morphological imprint’ determination of the injury-causing weapon from the wound morphology

Thompson, T. J. U. and Inglis, J. 2009. 'Differentiation of serrated and non-serrated blades from stab marks in bone', International Journal of Legal Medicine, 123 (2), pp.129-135. 10.1007/s00414-008-0275-x

<table>
<thead>
<tr>
<th>Technical application of material</th>
<th>Xantopren</th>
<th>Microsil</th>
<th>Alec Tiranti</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1: Easy to execute actions, requires minimal effort to achieve desired result.</td>
</tr>
<tr>
<td>Application</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2: Moderate effort required to achieve desired results, re-reading or additional attempts may be undertaken.</td>
</tr>
<tr>
<td>Set Time</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3: Very difficult to execute action, or high failure rate of procedure resulting in multiple attempts before achieving desired result, or results not achieved.</td>
</tr>
<tr>
<td>Removal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effects on osteological material</th>
<th>Damage to cortex</th>
<th>Staining</th>
<th>Air gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xantopren</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Microsil</td>
<td>2*</td>
<td>2*</td>
<td>2*</td>
</tr>
<tr>
<td>Alec Tiranti</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Suitability for use on bone | 2 | 1.71 | 1.43 |

Dependant on application and correct mixing
Alec Tiranti putty cast of trauma showing adhering Xantopren

Click here to download high resolution image
Archaeological bone showing adhering Xantopren and Mikrosil

Click here to download high resolution image
SEM composite micrograph (x30) of kerf number 7 in modern bone
Click here to download high resolution image
SEM composite micrographs of casts made of kerf 7 with a) Alec T
Click here to download high resolution image
Composite SEM micrograph showing 'gaps' created by air pockets
SEM micrograph showing the saw mark characteristics and the kerf

Kerf floor

Kerf wall

1.19mm
Reconstructed cranium of burial 90 from Stanground South, Peterborough.
SEM micrograph showing extensive tool mark trauma on a cranium.

Click here to download high resolution image.